
Abstract. The accuracies of approximate formulas are
examined for several characteristics of the interelectronic
angle density A(h12), where h12 (0 £ h12 £ p) is the angle
subtended by the position vectors r1 and r2 of two
electrons. Numerical results for 102 atoms show that
simple approximations have sufficient accuracies for the
moments hn

12

� �
with n=1–4, the central moments ln

with n=2, 4, and the kurtosis, when measured by the
absolute and relative errors. For heavy atoms, however,
the relative errors for the third central moment l3 and
the skewness are large.
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Introduction

For an N-electron (N‡2) system, the interelectronic
angle density A(h12) is defined [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
by

A h12ð Þ � sin h12ð Þ�1
Z

dr01dr
0
2 d h12 � h012
� �

C r01; r
0
2

� �
; ð1Þ

where d(x) is the Dirac delta function, h12¢ is the angle
spanned by the position vectors r1¢ and r2¢, and C r1; r2ð Þ is
the spinless two-electron density function [11] normalized
to the number of electron pairs N(N)1)/2. The density
A(h12) is the probability density function that the angle hij
(0 £ hij £ p) subtended by the vectors ri and rj of any two
electrons i and j becomes h12, and is normalized as

Zp

0

dh12 sin h12A h12ð Þ ¼ N N � 1ð Þ
2

: ð2Þ

The interelectronic angle density function A(h12) is a
useful tool to characterize the spatial distribution of
electron pairs in atoms and molecules through the
interelectronic angle h12. However, the examination of
these densities is very limited in the literature. Only for
the He, Li, and Be atoms and some of their isoelec-
tronic ions, the correlation contribution in A(h12) was
studied in an ad hoc manner [1, 2, 3, 4, 5, 6].
Exceptions are Refs. [7, 8], in which the mathematical
structure of the interelectronic angle densities is clari-
fied. The densities A(h12) of the 102 neutral atoms
from He to Lr in their ground states were discussed [8]
at the Hartree–Fock limit level. A subshell-pair
analysis of the average interelectronic angles Æh12æ was
reported in Ref. [9] for the 102 atoms and several
general results for equivalent electrons in atoms were
given in Ref. [10].

In Ref. [8], it was shown that the interelectronic angle
density A(h12), given by Eq. (1), is rewritten as a linear
combination of Legendre polynomials Pk(cosh12),

A h12ð Þ ¼
X1

k¼0

2k þ 1

2
qkPk cos h12ð Þ; ð3Þ

where the expansion coefficients qk are

qk �
Z

dr1dr2Pk cos h12ð ÞC r1; r2ð Þ: ð4Þ

Owing to the special functional form of A(h12), the first
few coefficients qk of the linear combination have
approximate relations with the characteristics of the
density A(h12). The present short paper discusses the
accuracies of these approximate formulas for the 102
atoms in their ground states. It will be found that
simple approximations have sufficient accuracies for
practical applications in most cases. Angles are given in
radians.
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Characteristics of interelectronic angle densities

The definitions of several characteristics and the
corresponding approximate formulas for the interelec-
tronic angle density A(h12) are summarized in the
following.

Taking the normalization condition (Eq. 2) into
account, we define the expectation value Æf(h12)æ of an
angular function f(h12) by

f h12ð Þh i � 2

NðN � 1Þ

Zp

0

dh12 sin h12f h12ð ÞA h12ð Þ: ð5Þ

For f h12ð Þ ¼ hn
12 with a nonnegative integer n, combi-

nation of Eqs. (3) and (5) gives the interelectronic
angular moments hn

12

� �
as

hn
12

� �
¼
X1

k¼0

2k þ 1

2

qk

q0
In;k; ð6Þ

where q0=N(N)1)/2 from Eq. (4) and

In;k �
Zp

0

dh12 sin h12h
n
12Pk cos h12ð Þ

¼
Z1

�1

dx arccosn xPk xð Þ: ð7Þ

Since the square-integrability of the functions arccosnx
and A(h12) means

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2

r

In;k ! 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

2

r

qk ! 0; when k !1 ð8Þ

we keep the first n terms in the summation of Eq. (6) to
obtain an approximate formula

hn
12

� �
ffi
Xn

k¼0

2k þ 1

2

qk

q0
In;k ð9Þ

for the angular moment.
A particular case of Eq. (9) for n=1 is found to be

h12h i ffi p
2
� 3p

8

q1

q0
: ð10Þ

The average interelectronic angle Æh12æ is conveniently
estimated from the first two of the expansion coeffi-
cients qk. Since q0 is positive, Eq. (10) implies that the
sign of the coefficient q1 determines whether Æh12æ is
smaller or larger than p/2. If we note an equality q1/
q0=Æcosh12æ, Eq. (10) also provides an approximate
connection between the average angle Æh12æ and the
average cosine Æcosh12æ. Another important aspect of
Eq. (10) is that it relates the average interelectronic
angle with the statistical angular correlation coefficient.
On the basis of concepts from mathematical statistics
and probability theory, Kutzelnigg et al. [12] intro-
duced statistical correlation coefficients s[g] as simple
numerical indices which provide overall measures for
the statistical correlation of electrons, where g=g(r) is
a probe function. When g(r)=r/r is chosen, it is known
[13, 14, 15, 16] that the correlation coefficient s[r/r]
reduces to Æcosh12æ and measures the angular correla-
tion (against the radial correlation) of electrons.
Therefore, Eq. (10) clarifies that the average interelec-
tronic angles Æh12æ smaller and larger than p/2 have
one-to-one correspondences with the positive and
negative electron correlations observed in the coeffi-
cient s[r/r]; namely, h12h i � p=2 ffi � 3p=8ð Þs r=r½ �:

When f(h12)=(h12)Æh12æ)n, Eq. (5) defines the nth
central moments ln of the interelectronic angle density
A(h12):

ln �
D

h12 � h12h ið Þn
E
¼
Xn

k¼0

�1ð Þn�kn!

k! n� kð Þ! hk
12

� �
h12h in�k;

ð11Þ

Fig. 1a,b. Comparison of the calculated and estimated properties as
a function of atomic number Z. a Average interelectronic angle
Æh12æ. b Second central moment l2 or variance r2
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where l2 is nothing but the variance r2 of the density.
Substituting Eq. (6) into Eq. (11) and keeping the terms
linear in qk/q0 with k £ n, we find that the central
moments ln for n=2–4 are approximated by

l2 ¼ r2 ffi p2 � 8

4
þ 10

9

q2

q0
; ð12aÞ

l3 ffi
3p p2 � 9
� �

16

q1
q0
þ
7p 4p2 � 81
� �

1024

q3
q0
; ð12bÞ

and

l4 ffi
p4 � 48p2 þ 384

16
þ
5 9p2 � 80
� �

27

q2

q0

þ
4 225p2 � 1622
� �

1875

q4
q0
: ð12cÞ

Equations (12a), (12b), and (12c) also enable us to
know the skewness c1 and kurtosis c2,

c1 ¼ l3

�
r3; ð13aÞ

c2 ¼ l4

�
r4

� �
� 3; ð13bÞ

of the interelectronic angle density A(h12) directly from
the first five coefficients qk, where c1 and c2 measure the
degree of asymmetry and the degree of peakedness
(relative to a normal distribution), respectively.

Numerical results and discussion

To check the accuracy of the approximate relations in a
systematic manner, we examined the interelectronic
angle densities A(h12) of the 102 ground-state atoms
from He to Lr at the Hartree–Fock limit level. The
required data were taken from Ref. [8].

We first consider the angular moments hn
12

� �
for

n=1–4. In the case of n=1, the Hartree–Fock and
approximate Æh12æ values are explicitly compared in
Fig. 1a as a function of atomic number Z. When Z £ 20,

the approximate formula, Eq. (10), gives values identical
to the Hartree–Fock ones. When Z ‡ 21, the estimated
Æh12æ are always smaller than the Hartree–Fock values,
but correctly reproduce the Z-dependence of Æh12æ. The
absolute error of Eq. (10) is maximum (0.0010) at Z=29
and the average over the 102 atoms is 0.0006. The rel-
ative error is only )0.03% on average, with the maxi-
mum ()0.06%) at Z=29. We thus find that Eq. (10) is
very accurate. Analogous results are obtained for the
other moments hn

12

� �
with n=2–4, as summarized in

Table 1. Therefore, Eq. (9) is concluded to give a suffi-
ciently accurate estimation of hn

12

� �
as long as n=1–4 is

concerned.
The second central moments l2 (or the variance r2)

obtained from the Hartree–Fock calculation and esti-
mated from Eq. (12a) are compared in Fig. 1b. When
Z £ 4, the two values coincide. When Z ‡ 5, the
approximate l2 are larger than the Hartree–Fock values
with no exceptions. However, the absolute error is
0.0011 on average, with the maximum 0.0031 at Z=7.
The relative error is 0.23% on average with the maxi-
mum 0.71% at Z=7. We thus find that Eq. (12a) yields
a sufficiently accurate estimation of l2=r2. Analogous
results are obtained for the fourth central moment l4, as
summarized in Table 1. On the other hand, the accuracy
of the approximate formula, Eq. (12b), for the third
central moment l3 is different from that for l2 or l4. As
shown in Table 1, the absolute error of Eq. (12b) for l3

is similar to that of Eq. (12a) for l2 or Eq. (12c) for l4,
but the magnitude of l3 is very small compared with the
magnitudes of l2 and l4, reflecting a small asymmetry in
the interelectronic angle densities. In particular, |l3| is
smaller than 0.001 for Z ‡ 63; therefore, the relative
error for l3 is calculated to be large. When the relative
error is used as a measure, we conclude that Eqs. (12a)
and (12c) are accurate enough but Eq. (12b) is not.

We also estimated the skewness c1 by combining the
two approximate formulas, Eqs. (12a) and (12b), and
the kurtosis c2 by combining Eqs. (12a) and (12c). The
calculated and estimated values are compared in Fig. 2
as a function of Z. Except for the first three atoms with
Z=2–4, both c1 and c2 are estimated to be smaller than
the Hartree–Fock values, but the Z-dependences are

Table 1. Characteristics of the
interelectronic angle densities
and the errors of the
approximate formulas for the
102 atoms from He to Lr

Property Values for the 102 atoms Average errors of the
approximations

Minimum Average Maximum Absolute Relative (%)

Æh12æ 1.5708 1.5881 1.6262 0.0006 )0.03

h212
� �

2.9348 2.9783 3.0840 0.0011 )0.04

h312
� �

6.0784 6.1747 6.4397 0.0026 0.04

h412
� �

13.4869 13.6997 14.3577 0.0010 )0.01
l2=r2 0.4326 0.4559 0.4674 0.0011 0.23
l3 )0.0198 )0.0036 0.0002 0.0009 149.50
l4 0.4287 0.4607 0.4793 0.0008 0.18
c1 )0.0673 –0.0121 0.0006 0.0030 148.67
c2 )0.8062 –0.7835 –0.7092 0.0064 0.82
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correctly reproduced. Since two approximate formulas
are combined in the estimation of c1 and c2, the absolute
errors are larger than the cases of hn

12

� �
and ln as shown

in Table 1. For Z ‡ 63, the magnitude of the Hartree–
Fock c1 is smaller than 0.005 and the relative error is
calculated to be very large. On the other hand, the rel-
ative error for c2 is 0.82% on average with the maximum
of 1.67% at Z=8.

At the correlated level of calculations, we could not
find the literature data appropriate for the present pur-

pose, except for those in Ref. [17] where the average
angles Æh12æ were studied for a series of two-electron
atoms. In these correlated cases, the values estimated by
Eq. (10) are smaller, as in the Hartree–Fock cases, than
the calculated values. However, the maximum absolute
and relative errors are only 0.0004 and )0.02%,
respectively, and Eq. (10) is again concluded to be an
excellent approximation.

Summary

The first few coefficients qk appearing in the general
expression of the interelectronic angle density A(h12)
have approximate relations with the characteristics of
the density A(h12). The numerical tests on the 102 atoms
have shown that the approximate formulas have suffi-
cient accuracies for hn

12

� �
with n=1–4 and ln with

n=2, 4, when measured by the absolute and relative
errors. The estimation of c2 is slightly less accurate. For
heavy atoms, however, the relative errors for l3 and c1
are large.
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Fig. 2a,b. Comparison of the calculated and estimated properties as
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